Modelling 1 &, O

SUMMER TERM 2020

T, @ 1L
< | |

LECTURE 8
(Linear) Information Loss

Michael Wand - Institut fur Informatik - Michael.Wand@uni-mainz.de

I8
1N

fo

rmation Loss

Nl

ear Mappings

Linear Maps

A function
= .V — W between vector spaces V, W

is linear if and only if:
"Vvuvelt f(vi+vy) =f(ve) + (V)
=Vvel, leR: f(Av) = Af(V)

Matrix Product

All operations are matrix-matrix products:
= Matrix-Vector product:

= f(x) =M -x

\"%

Not invertible

- ~—
- ~—
- ~
-~ ~
~
~
~

____________________________ s x1 + xZ
) T f(b,) 00 = (50t 432

(z 2)x

~
\ Y
o o
i
x
Il

P
-
-

1D

Information flow:

= After f, we can recover b, + b,
= Sum of inputs

= We do not know b; — b, anymore
= Difference of inputs

Not invertible

- -~
- -
- ~
- ~
- ~~o
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-~
-

~
~
~<
~
~
~
~
~
~
~S
~

f(by)*
Gm “’y
0
f |where
possible
1D

Information flow:

= After f, we can recover b, + b,
= Sum of inputs

= We do not know b; — b, anymore
= Difference of inputs

£00 = (

I
~ N\

X1+XZ

le + ZXZ

1 1
2 2

).x

)

Not invertible

aaaaa
aaaaa

X1 + X3
T fX) =1 x; +x3

1 0 1
=<0 1 1>-x
0O 0 O

~
~
~
~
~
~
~o
~.
~o
~
~
~
~
~<
~~
-~
~~
~
~~o
Sean

-~
~~~~~~
~~a -
- -
-~ -
______
‘‘‘‘‘‘‘‘‘

Information flow:
= After f, we can recover b, + b; and b, + by
= We do not know b, — b; anymore



Not invertible

f |where
possible

Information flow:
= After f, we can recover b, + b; and b, + by
= We do not know b, — b3 anymore



Orthogonal Comlement

Definition
= Given: Subspacel, € V
= Orthogonal complement

Ve == {v € V|Vw € V:{v,w) = 0}

Intuition
= Set of all vectors orthogonal to 1,
= /ero projection onto any w € I

Theorem
V; €V =V =span{l,,V;-} [=V, & V]



In general

Consider mapping
fri-=V
Subspaces of I/,
= Kernel: Subspace that is lost

ker f == {x € V;|f(x) = 0}

= Orthogonal complement of kernel f(bg) *
f(by)

[ker f]+ = {v € V,|Vw € kerf: (v, w) = 0} 0

= Inthis space, f is invertible 1D



In general

Consider mapping
fivi->V
In the target domain
imf:={y €V,[Ix € V;: f(x) =y}
= Subspaceof I/,

= Same dimension as kernel complement
dim([ker f]*) = dim(im f)



In general

Consider mapping
= Rank is the dimension of the mapped space

rank(f) = dim(im f)
= dim(span(Vl\ker f))
= Source space I/ is split:

« dim im(f) = dimensions “preserved” by f

= dim ker (f) = dimensions “removed” by f

= SUMS up:
dim(/;) = dim(im f) + dim(ker )



Structural Insight

Mapping Subspaces to Subspaces
= Invertible map from [ker f]+ = im f

= Not covered
= “Source” information lost: coordinates within ker f
= Unreachable "targets”: vectors within [im f]*



Structural Insight

Dimensions add up
= dim[ker ]+ = dimim f
= dimV; = dimker f + dim[ker ]+
= dimV, = dimim f + dim[im f]*



In practice?

In practice

= |t always never works:
= Most matrices have noise (measurement, numerics)
— Any practical mapping has "full rank’
= Inverting matrices is not always stable
— Even full-rank matrices might delete information
= Need to understand this better!

We will discuss this soon

= Tools:
= Eigenvalues
= Singular value decomposition (SVD)



Linear Systems of Equations
Inverting Linear Maps



Situation

General Case Orthogonal

Linear System Direct Computation

vyttt A v, =W =V W

Ay =v, W



Linear Systems of Equations

Problem: Invert an affine map

= Glven:A-x=b, le, A-x—b =0
= We know A, b
= Looking for x

= Computex=A"1-b

Solution

= Set of solutions: affine subspace of R™ (or @)
= Point, line, plane, hyperplane...

= [nnumerous algorithms



Linear Systems of Equations

{x | Ax = 0} — hyperplane
through the origin

ker A

"Homogeneous” system

{x | Ax = b} — hyperplane
through any point

y with Ay =b

0
‘Inhomogeneous” system



Structure

Linear System (A:V, —» 1,):
= Ax =10
= Solution space = ker A
= Ax=Db
= Might or might not have a solution
= Solutionifand only if b € im A

= Set of all solutions:
= OneywithAy = b
= Add any solution of Ax = 0
= Solution set: y + ker A

/cél‘\‘iV

/ ker A
70

7 )

/ soufce space ;

'\ !,/
7

® b - solution
® b’ - no solution
. .
0 ImA

target space V,



Solvers for Linear Systems

Solving linear systems of equations

= Baseline: Gaussian elimination
O(n3) operations for nxn matrices

= We can do better, in particular for specia

CaSes.

= Band matrices:;

constant bandwidth

= Sparse matrices:

constant number of non-zero

entries per row

— Store only non-zero entries




Solvers for Linear Systems

Algorithms: linear systems of n equations
= Band matrices, O(1) bandwidth:

= Modified O(n) elimination algorithm.

= [terative Gauss-Seidel solver
= converges for diagonally dominant matrices
= Typically: O(n) iterations, each costs O(n) for a sparse matrix.

= Conjugate Gradient solver
= Only symmetric, positive definite matrices
= Guaranteed: O(n) iterations
= Typically good solution after O(/7n) iterations.

See: J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain, 1994.



