Modelling 1

 SUMMER TERM 2020

LECTURE 8

(Linear) Information Loss

Information Loss in Linear Mappings

Linear Maps

A function

- $f: V \rightarrow W$ between vector spaces V, W

is linear if and only if:

- $\forall \mathrm{v}_{1}, \mathrm{v}_{2} \in V: \quad f\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=f\left(\mathrm{v}_{1}\right)+f\left(\mathrm{v}_{2}\right)$
- $\forall \mathrm{v} \in V, \lambda \in \mathbb{R}: f(\lambda \mathrm{v})=\lambda f(\mathrm{v})$

Matrix Product

All operations are matrix-matrix products:

- Matrix-Vector product:
- $f(\mathrm{x})=\mathbf{M}_{f} \cdot \mathbf{x}$

Not invertible

$$
\begin{aligned}
f(\mathbf{x}) & =\binom{x_{1}+x_{2}}{2 x_{1}+2 x_{2}} \\
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \cdot \mathbf{x}
\end{aligned}
$$

Information flow:

- After f, we can recover $b_{1}+b_{2}$
- Sum of inputs
- We do not know $b_{1}-b_{2}$ anymore
- Difference of inputs

Not invertible

Information flow:

- After f, we can recover $b_{1}+b_{2}$
- Sum of inputs
- We do not know $b_{1}-b_{2}$ anymore
- Difference of inputs

Not invertible

Information flow:

- After f, we can recover $b_{1}+b_{3}$ and $b_{2}+b_{3}$
- We do not know $b_{2}-b_{3}$ anymore

Not invertible

Information flow:

- After f, we can recover $b_{1}+b_{3}$ and $b_{2}+b_{3}$
- We do not know $b_{2}-b_{3}$ anymore

Orthogonal Comlement

Definition

- Given: Subspace $V_{S} \subseteq V$
- Orthogonal complement

$$
V_{S}^{\perp}:=\left\{\mathbf{v} \in V \mid \forall \mathbf{w} \in V_{s}:\langle\mathbf{v}, \mathbf{w}\rangle=0\right\}
$$

Intuition

- Set of all vectors orthogonal to V_{S}
- Zero projection onto any $\mathbf{w} \in V_{S}$

Theorem

$$
V_{s} \subset V \Rightarrow V=\operatorname{span}\left\{V_{s}, V_{s}^{\perp}\right\}\left[:=V_{s} \oplus V_{s}^{\perp}\right]
$$

In general

Consider mapping

$$
f: V_{1} \rightarrow V_{2}
$$

Subspaces of V_{1}

- Kernel: Subspace that is lost

$$
\operatorname{ker} f:=\left\{\mathbf{x} \in V_{1} \mid f(\mathbf{x})=0\right\}
$$

- Orthogonal complement of kernel
$[\operatorname{ker} f]^{\perp}=\left\{\mathrm{v} \in V_{1} \mid \forall \mathrm{w} \in \operatorname{ker} f:\langle\mathrm{v}, \mathrm{w}\rangle=0\right\}$

- In this space, f is invertible

In general

Consider mapping

$$
f: V_{1} \rightarrow V_{2}
$$

In the target domain

$$
\operatorname{im} f:=\left\{\mathbf{y} \in V_{2} \mid \exists \mathbf{x} \in V_{1}: f(\mathbf{x})=\mathbf{y}\right\}
$$

- Subspace of V_{2}
- Same dimension as kernel complement

$$
\operatorname{dim}\left([\operatorname{ker} f]^{\perp}\right)=\operatorname{dim}(\operatorname{im} f)
$$

In general

Consider mapping

- Rank is the dimension of the mapped space

$$
\begin{aligned}
\operatorname{rank}(f) & :=\operatorname{dim}(\operatorname{im} f) \\
& =\operatorname{dim}\left(\operatorname{span}\left(V_{1} \backslash \operatorname{ker} f\right)\right)
\end{aligned}
$$

- Source space V_{1} is split:
- $\operatorname{dim} \operatorname{im}(f)=$ dimensions "preserved" by f
- $\operatorname{dim} \operatorname{ker}(f)=$ dimensions "removed" by f
- Sums up:

$$
\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}(\operatorname{im} f)+\operatorname{dim}(\operatorname{ker} f)
$$

Structural Insight

Mapping Subspaces to Subspaces

- Invertible map from $[\text { ker } f]^{\perp} \rightarrow \operatorname{im} f$
- Not covered
- "Source" information lost: coordinates within $\operatorname{ker} f$
- Unreachable "targets": vectors within $[\mathrm{im} f]^{\perp}$

Structural Insight

Dimensions add up

- $\operatorname{dim}[\operatorname{ker} f]^{\perp}=\operatorname{dimim} f$
- $\operatorname{dim} V_{1}=\operatorname{dim} \operatorname{ker} f+\operatorname{dim}[\operatorname{ker} f]^{\perp}$
- $\operatorname{dim} V_{2}=\operatorname{dimim} f+\operatorname{dim}[\operatorname{im} f]^{\perp}$

In practice?

In practice

- It always never works:
- Most matrices have noise (measurement, numerics)
- Any practical mapping has "full rank"
- Inverting matrices is not always stable
- Even full-rank matrices might delete information
- Need to understand this better!

We will discuss this soon

- Tools:
- Eigenvalues
- Singular value decomposition (SVD)

Linear Systems of Equations Inverting Linear Maps

Situation

General Case
Orthogonal

Linear System
$\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{n} \cdot \mathbf{v}_{n}=\mathbf{w}$

$$
\begin{gathered}
\lambda_{1}=\mathbf{v}_{1} \cdot \mathrm{w} \\
\vdots \\
\lambda_{n}=\mathbf{v}_{n} \cdot \mathrm{w}
\end{gathered}
$$

Linear Systems of Equations

Problem: Invert an affine map

- Given: $\mathbf{A} \cdot \mathbf{x}=\mathrm{b}$, i.e, $\mathbf{A} \cdot \mathbf{x}-\mathrm{b}=\mathbf{0}$
- We know A, b
- Looking for \mathbf{x}
- Compute $\mathbf{x}=\mathrm{A}^{\mathbf{- 1}} \cdot \mathrm{b}$

Solution

- Set of solutions: affine subspace of \mathbb{R}^{n} (or \varnothing)
- Point, line, plane, hyperplane...
- Innumerous algorithms

Linear Systems of Equations

$\{\mathrm{x} \mid \mathrm{Ax}=0\}$ - hyperplane through the origin

"Homogeneous" system

Structure

Linear System (A: $V_{1} \rightarrow V_{2}$):

- $\mathrm{Ax}=0$
- Solution space = ker A
- $\mathbf{A x}=\mathrm{b}$
- Might or might not have a solution
- Solution if and only if b \in im \mathbf{A}
- Set of all solutions:
- One \mathbf{y} with $\mathbf{A y}=$ b
- Add any solution of $\mathbf{A x}=\mathbf{0}$
- Solution set: $\mathbf{y}+\operatorname{ker} \mathbf{A}$

Solvers for Linear Systems

Solving linear systems of equations

- Baseline: Gaussian elimination
$O\left(n^{3}\right)$ operations for $n \times n$ matrices
- We can do better, in particular for special cases:
- Band matrices: constant bandwidth

- Sparse matrices: constant number of non-zero entries per row
- Store only non-zero entries

Solvers for Linear Systems

Algorithms: linear systems of n equations

- Band matrices, O(1) bandwidth:
- Modified O(n) elimination algorithm.
- Iterative Gauss-Seidel solver
- converges for diagonally dominant matrices
- Typically: O(n) iterations, each costs O(n) for a sparse matrix.
- Conjugate Gradient solver
- Only symmetric, positive definite matrices
- Guaranteed: O(n) iterations
- Typically good solution after $O \sqrt{n}$) iterations.

