
Modelling 1
SUMMER TERM 2020

LECTURE 8

(Linear) Information Loss
Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Informatik

Institut

für

Information Loss
in Linear Mappings

Linear Maps

A function

▪ f : 𝑉→𝑊 between vector spaces 𝑉, 𝑊

is linear if and only if:

▪ v1,v2V: f (v1 + v2) = f (v1) + f (v2)

▪ vV, ℝ: f (v) =  f (v)

Matrix Product

All operations are matrix-matrix products:

▪ Matrix-Vector product:

▪ 𝑓 𝐱 = 𝐌𝑓 ⋅ 𝐱

v

M

°

Not invertible

Information flow:

▪ After 𝑓, we can recover 𝑏1 + 𝑏2
▪ Sum of inputs

▪ We do not know 𝑏1 − 𝑏2 anymore

▪ Difference of inputs

𝐛2

𝐛1
𝑓

𝑓 𝐱 =
𝑥1 + 𝑥2
2𝑥1 + 2𝑥2

=
1 1
2 2

⋅ 𝐱
𝑓 𝐛1

𝑓 𝐛2

𝟎𝟎

2D 1D

Not invertible

Information flow:

▪ After 𝑓, we can recover 𝑏1 + 𝑏2
▪ Sum of inputs

▪ We do not know 𝑏1 − 𝑏2 anymore

▪ Difference of inputs

𝐛2

𝐛1

𝑓 𝐱 =
𝑥1 + 𝑥2
2𝑥1 + 2𝑥2

=
1 1
2 2

⋅ 𝐱
𝑓 𝐛1

𝑓 𝐛2

𝟎𝟎

2D 1D

𝑓−1 ቚwhere
possible

Not invertible

Information flow:

▪ After 𝑓, we can recover 𝑏1 + 𝑏3 and 𝑏2 + 𝑏3

▪ We do not know 𝑏2 − 𝑏3 anymore

𝐛2

𝐛1

𝐛3
𝑓

𝑓 𝐱 =
𝑥1 + 𝑥3
𝑥2 + 𝑥3

0

=
1 0 1
0 1 1
0 0 0

⋅ 𝐱

Not invertible

Information flow:

▪ After 𝑓, we can recover 𝑏1 + 𝑏3 and 𝑏2 + 𝑏3

▪ We do not know 𝑏2 − 𝑏3 anymore

𝐛2

𝐛1

𝐛3 𝑓−1 ቚwhere
possible

𝑓 𝐱 =
𝑥1 + 𝑥3
𝑥2 + 𝑥3

0

=
1 0 1
0 1 1
0 0 0

⋅ 𝐱

Orthogonal Comlement

Definition

▪ Given: Subspace 𝑉𝑠 ⊆ 𝑉

▪ Orthogonal complement

𝑉𝑆
⊥ ≔ {𝐯 ∈ 𝑉|∀𝐰 ∈ 𝑉𝑠: 𝐯,𝐰 = 0}

Intuition

▪ Set of all vectors orthogonal to 𝑉𝑠

▪ Zero projection onto any 𝐰 ∈ 𝑉𝑠

Theorem
𝑉𝑠 ⊂ 𝑉 ⇒ 𝑉 = span 𝑉𝑠, 𝑉𝑠

⊥ [≔ 𝑉𝑠 ⊕ 𝑉𝑠
⊥]

𝑉𝑠𝑉𝑠
⊥

𝑉

In general

Consider mapping

𝑓: 𝑉1 → 𝑉2

Subspaces of 𝑉1
▪ Kernel: Subspace that is lost

ker 𝑓 ≔ 𝐱 ∈ 𝑉1 𝑓 𝐱 = 0

▪ Orthogonal complement of kernel

ker 𝑓 ⊥ = 𝐯 ∈ 𝑉1|∀𝐰 ∈ ker𝑓: 𝐯,𝐰 = 0

▪ In this space, 𝑓 is invertible

ker 𝑓 ⊥

𝟎

ker 𝑓

𝑓 𝐛1

𝑓 𝐛2

𝟎

1D

𝐛1

𝐛2

In general

Consider mapping

𝑓: 𝑉1 → 𝑉2

In the target domain

im𝑓 ≔ 𝐲 ∈ 𝑉2 ∃𝐱 ∈ 𝑉1: 𝑓 𝐱 = 𝐲

▪ Subspace of 𝑉2

▪ Same dimension as kernel complement

dim ker 𝑓 ⊥ = dim im𝑓

In general

Consider mapping

▪ Rank is the dimension of the mapped space

rank 𝑓 ≔ dim im 𝑓

= dim span 𝑉1\ker 𝑓

▪ Source space 𝑉1 is split:

▪ dim im 𝑓 = dimensions “preserved” by f

▪ dim ker 𝑓 = dimensions “removed” by f

▪ Sums up:

dim 𝑉1 = dim im 𝑓 + dim ker 𝑓

Structural Insight

Mapping Subspaces to Subspaces

▪ Invertible map from ker 𝑓 ⊥ → im 𝑓

▪ Not covered

▪ “Source” information lost: coordinates within ker 𝑓

▪ Unreachable ”targets”: vectors within im 𝑓 ⊥

𝐛2

𝐛1

𝐛3 𝑓(𝐛3)

𝑓(𝐛2)

𝑓(𝐛1)
𝑉1 𝑉2

𝑓: 𝑉1 → 𝑉2

Structural Insight

Dimensions add up

▪ dim ker 𝑓 ⊥ = dim im 𝑓

▪ dim𝑉1 = dimker 𝑓 + dim ker 𝑓 ⊥

▪ dim𝑉2 = dim im𝑓 + dim im𝑓 ⊥

𝐛2

𝐛1

𝐛3 𝑓(𝐛3)

𝑓(𝐛2)

𝑓(𝐛1)
𝑉1 𝑉2

𝑓: 𝑉1 → 𝑉2

In practice?

In practice

▪ It always never works:

▪ Most matrices have noise (measurement, numerics)

– Any practical mapping has “full rank”

▪ Inverting matrices is not always stable

– Even full-rank matrices might delete information

▪ Need to understand this better!

We will discuss this soon

▪ Tools:

▪ Eigenvalues

▪ Singular value decomposition (SVD)

Linear Systems of Equations

Inverting Linear Maps

Situation

Linear System

𝜆1 ⋅ 𝐯1 +⋯+ 𝜆𝑛 ⋅ 𝐯𝑛 = 𝐰

𝐯2

𝐯1

𝐰
𝜆1

𝜆2

Direct Computation

𝜆1 = 𝐯1 ⋅ 𝐰
⋮

𝜆𝑛 = 𝐯𝑛 ⋅ 𝐰

General Case Orthogonal

𝜆2

𝜆1

𝐯2

𝐯1

𝐰

Linear Systems of Equations

Problem: Invert an affine map

▪ Given: 𝐀 ⋅ 𝐱 = 𝐛, i.e, 𝐀 ⋅ 𝐱 − 𝐛 =0

▪ We know 𝐀, 𝐛

▪ Looking for 𝐱

▪ Compute 𝐱 = 𝐀−𝟏 ⋅ 𝐛

Solution

▪ Set of solutions: affine subspace of ℝ𝑛 (or ∅)

▪ Point, line, plane, hyperplane...

▪ Innumerous algorithms

Linear Systems of Equations

{𝐱 | 𝐀𝐱 = 𝟎} – hyperplane
through the origin

0

ker 𝐀

0

ker 𝐀

𝒚 with 𝐀𝐲 = 𝐛

{𝐱 | 𝐀𝐱 = 𝐛} – hyperplane
through any point

“Homogeneous” system

“Inhomogeneous” system

Structure

Linear System (𝐀:𝑉1 → 𝑉2):

▪ 𝐀𝐱 = 𝟎
▪ Solution space = ker𝐀

▪ 𝐀𝐱 = 𝐛
▪ Might or might not have a solution

▪ Solution if and only if 𝐛 ∈ im 𝐀

▪ Set of all solutions:

▪ One 𝐲 with 𝐀𝐲 = 𝐛

▪ Add any solution of 𝐀𝐱 = 𝟎

▪ Solution set: 𝐲 + ker 𝐀

0
ker 𝐀

target space 𝑉2

0 im 𝐀

b - solution

𝐛′ – no solution

solutions

source space 𝑉1

Solvers for Linear Systems

Solving linear systems of equations

▪ Baseline: Gaussian elimination
O(n3) operations for nn matrices

▪ We can do better, in particular for special cases:

▪ Band matrices:
constant bandwidth

▪ Sparse matrices:
constant number of non-zero
entries per row

– Store only non-zero entries

Solvers for Linear Systems

Algorithms: linear systems of n equations

▪ Band matrices, O(1) bandwidth:
▪ Modified O(n) elimination algorithm.

▪ Iterative Gauss-Seidel solver
▪ converges for diagonally dominant matrices

▪ Typically: O(n) iterations, each costs O(n) for a sparse matrix.

▪ Conjugate Gradient solver
▪ Only symmetric, positive definite matrices

▪ Guaranteed: O(n) iterations

▪ Typically good solution after O(n) iterations.

See: J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain, 1994.

